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Validity of activity monitors in wheelchair users: A systematic review
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Abstract—Assessing physical activity (PA) in manual wheel-
chair users (MWUs) is challenging because of their different 
movement patterns in comparison to the ambulatory popula-
tion. The aim of this review was to investigate the validity of 
portable monitors in quantifying PA in MWUs. A systematic 
literature search was performed. The data source was full 
reports of validation and evaluation studies in peer-reviewed 
journals and conference proceedings. Eligible articles between 
January 1, 1999, and September 18, 2015, were identified in 
three databases: PubMed, Institute of Electrical and Electronics 
Engineers, and Scopus. A total of 164 articles (158 from the 
databases and 6 from the citation/reference tracking) were 
identified, and 29 met the eligibility criteria. Two investigators 
independently extracted the characteristics from each selected 
article following a predetermined protocol and completed 
seven summary tables describing the study characteristics and 
key outcomes. In the identified studies, the monitors were used 
to assess three types of PA measures: energy cost, user move-
ment, and wheelchair movement. The customized algorithms/
monitors did not estimate energy cost in MWUs as well as the 
commercial monitors did in the ambulatory population; how-
ever, they showed fair accuracy in measuring both wheelchair 
and user movements.

Key words: activities of daily living, activity tracking, energy 
expenditure, manual wheelchair users, motion sensors, physi-
cal activities, physical fitness, portable activity monitors, pre-
diction models, wheelchair use.

INTRODUCTION

In the past decades, physical inactivity has become 
one of the biggest public health concerns in the United 
States and around the world [1]. According to a report 
from the Centers for Disease Control and Prevention, 
approximately 64 percent of the total healthcare expendi-
ture in the United States is used to treat the chronic dis-
eases that are associated with physical inactivity such as 
obesity, diabetes, cardiovascular diseases, and some can-
cers [2–3]. Although physical activity (PA) has numerous 
reported physical, physiological, and psychological bene-
fits [4–8], many people with disabilities tend to lead a 
sedentary lifestyle, especially those who use wheelchairs 
as their primary means of mobility [9]. There are cur-
rently 3.3 million wheelchair users in the United States, 
and 1.5 million of them are manual wheelchair users 

Abbreviations: CI = confidence interval, EE = energy expendi-
ture, HR = heart rate, ICC = intraclass correlation coefficient, 
IEEE = Institute of Electrical and Electronics Engineers, MAE = 
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injury, SCI = spinal cord injury.
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(MWUs) [10–11]. More than half (56%) of adult wheel-
chair users, even if able, do not engage in regular PA at 
recommended levels [4,12–13]. Consequently, this popu-
lation is three times more likely to have the aforemen-
tioned chronic diseases than people without disabilities 
[12–13]. Preventative measures such as promoting regu-
lar PA and an active lifestyle are some of the best ways to 
reduce the incidence of chronic illness and provide finan-
cial relief for an already strained medical system [14].

Quantifying PA is essential for determining the effec-
tiveness of PA promotion programs and facilitating
healthy behaviors and adherence to PA programs. It has 
been reported that people with disabilities are 82 percent 
more likely to be physically active if their healthcare pro-
viders recommend regular PA [13]. Clinicians, especially 
those who frequently interact with wheelchair users, play 
an important role in recognizing physical inactivity, moti-
vating engagement in regular PA, and promoting health 
and wellness [15]. Baseline assessment of PA can help 
clinicians assist their clients with establishing PA partici-
pation goals. Other advantages include preventing physi-
cal inactivity, decreasing the severity of secondary
conditions related to physical inactivity, limiting the 
degree of disability, and promoting regular PA [9,16]. 
Moreover, continuous and regular PA assessment allows 
clinicians to track the progress and compliance to the rec-
ommended interventions and assess the outcome of inter-
ventions [16]. Wheelchair users can also benefit from 
monitoring their own PA. Previous studies have shown 
that self-monitoring, along with feedback from experts, is 
a useful technique for increasing overall PA, as it pro-
vides cues for people to enact desired behaviors [17–18].

Many methods exist for assessing PA, such as sur-
veys, behavioral observations, physiological markers, 
calorimetry, and mechanical and electronic monitors 
[19]. Self-reported surveys and activity logs have been 
the most common approaches used by healthcare profes-
sionals to track their clients’ PA. Although these methods 
are inexpensive and practical for large-scale populations, 
it is often burdensome for individuals to repeatedly 
record their PA throughout the day. In addition, the data 
collected rely on an individual’s memory and societal 
desirability [16,20], and thus, these self-reported tools 
may lack the accuracy and sensitivity needed to detect 
changes in PA on a daily basis [17–19,21]. Brown et al. 
reported inconsistent results obtained from four common 
PA measurement surveys that were used around the 
world [22].

With the advancement in microelectromechanical 
systems and wireless technologies, the use of portable PA 
monitors to objectively quantify daily activities has 
become popular in the general public. There are many 
commercially available monitors. The two most com-
monly used types are accelerometer- and multisensor-
based monitors. Accelerometer-based monitors detect 
spatial changes in one, two, or three directions, while 
multisensor-based monitors detect spatial changes as 
well as physiological responses to bodily movement
(e.g., heart rate [HR], near-body temperature, and skin 
conductance). The validity of these monitors has been 
widely investigated in ambulatory populations. Van 
Remoortel et al. conducted a systematic review on the 
validity of activity monitors in individuals with and with-
out chronic diseases who were able to ambulate and 
showed that triaxial accelerometer and multisensor-based 
devices are valid in tracking PA, with mean percent dif-
ferences of –6.85 percent (95% confidence interval [CI]: 
18.20% to 4.49%) and 3.64 percent (95% CI: 8.97% 
to 1.70%), respectively, when compared with the gold 
standard (i.e., doubly labeled water) [21]. However, the 
monitors were evaluated only on activities that required 
unimpaired lower-limb function (i.e., walking, stair 
climbing, and running) [21].

Currently, no systematic review has been completed 
on the use of activity monitors in a nonambulatory popu-
lation. Such a review is needed to (1) assist researchers to 
improve the quality of wearable health/fitness monitors 
for MWUs, (2) allow researchers and clinicians to assess 
the effectiveness of their PA interventions, and (3) allow 
clinicians to make recommendations about the use of 
technology in exercise and activity and monitor patients’ 
compliance to interventions [23]. The purpose of this sys-
tematic review was to examine the use and validity of 
either commercially available monitors or custom moni-
tors in quantifying PA-related outcomes in MWUs.

METHODS

Inclusion/Exclusion Criteria
Studies that met the following criteria were included 

in this review: (1) participants in the study had 1 diag-
nosis resulting in a long-term functional or activity limi-
tation that led to manual wheelchair use, (2) the 
instruments used in the study were commercial or cus-
tom-made products that were portable and designed for 
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everyday use, and (3) the outcomes of the activity moni-
tors were validated with gold standards or other validated 
tools. Review articles and studies that evaluated nonport-
able monitors or did not include MWUs in the validation 
protocol were excluded. No language restrictions were 
applied. Studies written in foreign languages were trans-
lated into English using a free online translator and 
checked by a native speaker to determine their eligibility.

Data Sources and Literature Searches
Three databases—PubMed, Institute of Electrical 

and Electronics Engineers (IEEE), and Scopus—were 
used for this review. A librarian was consulted to identify 
appropriate search terms for wheelchair users, activity 
monitors, and PA before initiating the search. For each of 
the databases, we searched the literature using the follow-
ing key terms: wheelchair user, activity monitor, and 
physical activity. Synonyms and different spellings of 
each key term were determined and joined using 
“OR” (Appendix 1, available online only). The 
exploded results of the key terms were combined using 
“AND.” Three filters were used to limit the search 
results. The article type (or document type) filter was 
used to elimi-nate review articles and notes. The 
publication dates filter was used to set publication date 
limits of January 1, 1999, to September 18, 2015. Articles 
published prior to 1999 were excluded because of the 
uncommon use of portable activity monitors for tracking 
PA before that time. The subject area (or publication title 
or journal categories) fil-ter was also used to remove 
articles in Biochemistry; Genetics and Molecular 
Biology; Physics and Astron-omy; Intelligent Robots 
and Systems; Rehabilitation Robotics; dental journals; 
Robotics and Automation Mag-azine: and Systems, Man 
and Cybernetics. The detailed search strategy used for 
PubMed is provided as an exam-ple in Appendix 1.

Corresponding authors of selected articles without 
full-text access were contacted for electronic copies of 
the articles. Full-text articles were downloaded, stored, 
and shared among investigators. Additional articles were 
identified through reference and citation tracking of the 
selected articles and relevant review articles.

Study Selection Strategy
The review team consisted of three members. Each 

member of the review team independently screened the 
titles and abstracts of the identified articles according to 
the inclusion/exclusion criteria. After the initial screen-

ing, the assessments of each reviewer were compared. 
Differences in screening results were discussed among 
reviewers until consensus was reached. Articles that had 
all reviewers’ consensus were downloaded for full-text 
evaluation. The same reviewers individually assessed the 
full text of the selected articles, and articles that had all 
reviewers’ consensus were chosen for data analysis.

Data Extraction
The data extraction protocol was developed prior to 

the search. The studies were categorized into three 
groups: (1) studies that evaluated commercial monitors 
with default algorithms, (2) studies that evaluated com-
mercial monitors with custom algorithms, and (3) studies 
that evaluated custom monitors that were primarily 
research prototypes. Seven tables were constructed that 
described the devices used and the details of the selected 
studies. Appendix 2 (available online only) is an over-
view of the commercial and custom devices used in the 
selected studies. Appendixes 3–5 (available online only) 
summarize the study design, while Tables 1–3 describe 
the key study results of every study in each of the three 
groups. After reviewing the full text of the articles, two 
investigators independently extracted the key characteris-
tics from each selected article following the protocol and 
completed these tables. Results from each investigator 
were compared, and consensus was achieved upon dis-
crepancies before compiling the results.

RESULTS

Literature Searches
The literature search from 3 databases yielded 158 

unique citations. Based on title and abstract screening, 
125 articles were rejected because they were review arti-
cles, did not include MWUs, did not evaluate or validate 
the devices by comparing to gold standard or reference 
comparisons, or evaluated devices that were not portable. 
Citation and reference tracking were performed on the 
remaining 33 articles that met the inclusion criteria, and as 
a result, 6 additional articles were identified for title and 
abstract screening. However, none of the 6 articles were 
included for full-text assessment because the inclusion 
criteria were not met. The same reviewers assessed the 
full text of the 33 articles (1 article required translation 
from Spanish to English), and 4 of them were rejected 
because they were conference abstracts, did not include 

http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
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Table 1.
Findings of six studies that evaluated commercial monitors with default algorithms.

Study, Year Monitor Criterion Measures Outcome Measures

Tanhoffer et al.,
2015 [24]

SW DLW Energy cost
TDEE: R2: 0.69, p = 0.003
PAEE: R2: 0.16, p = 0.13

Hiremath et al.,
2012 [29]

SW Cosmed K4b2* Energy cost
MSE: 55.3% (95% CI: 62.5% to –48.1%)
MAE: 59.2% (95% CI: 52.6% to 65.8%)
BA: –5.87, 2.13 kcal/min

Perez-Tejero et al.,
2012 [25]

SW PASIPD questionnaire Energy cost
Active EE (MET >3): r = 0.35, p < 0.01
MET: r = 0.52, p < 0.01
User movements
Duration of PA (i.e., time when MET >3 in 2 consecutive min):
r = 0.53, p < 0.01

Hiremath et al.,
2011 [27]

RT3, SW Cosmed K4b2* Energy cost
RT3: MAE: 22.0% to 52.8%; ICC(3,1): 0.64 (95% CI: 0.51 to 0.73);
Spearman rho: 0.72, p < 0.05
SW: MAE: 24.4% to 125.8%; ICC(3,1): 0.62 (95% CI: 0.49 to 0.72);
Spearman rho: 0.84, p < 0.05

Hiremath et al.,
2011 [28]

RT3 Cosmed K4b2* Energy cost
RT3 Waist: MAE: 21.3% to 55.2%
Range of MAE represented MAE’s for different activities

Warms and Belza,
2004 [26]

Actiwatch Self-reported PA record User movements
All activities: r = 0.60 (range: 0.30 to 0.77)
Exclude time in vehicle: r = 0.59 (range: 0.30 to 0.76)
Exclude time in sleep: r = 0.40 (range: 0.14 to 0.65)

Note: An overview of the commercial and custom monitors can be found in Appendix 2 (available online only).
*COSMED, Rome, Italy.
BA = Bland-Altman 95% limits of agreement, CI = confidence interval, DLW = doubly labeled water, EE = energy expenditure, ICC = intraclass correlation coeffi-
cient, MAE = mean absolute error, MET = metabolic equivalent, MSE = mean signed error, PAEE = Physical Activity Energy Expenditure, PA = physical activity, 
PASIPD = Physical Activity Scale for Individuals with Physical Disabilities, SW = SenseWear, TDEE = Total Daily Energy Expenditure.

MWUs, were not evaluation or validation studies, or did 
not evaluate monitors meant for everyday use. As a result, 
a total of 29 articles were included in this systematic 
review. A flow diagram outlining the review process is 
provided in the Figure.

Study Characteristics
A total of 19 different activity monitors were evaluated 

in 29 studies. There were 9 off-the-shelf activity monitors 
and 10 custom-made devices. The specifications of each 
device are shown in Appendix 2. Of the 29 articles selected, 
6 studies evaluated commercially available monitors with 
default algorithms for quantifying PA in MWUs [24–29] 
(Appendix 3), 15 evaluated commercially available moni-
tors with custom algorithms [28–42] (Appendix 4), and 10 
evaluated custom-made devices and algorithms [43–52] 

(Appendix 5). These activity monitors could be categorized 
into three types: accelerometer-based, multisensor-based, 
and others (gyroscope- or HR-based). Among the 29 arti-
cles, 14 investigated accelerometer-based monitors (1 uni-
axial [38] and 13 triaxial [26,32–33,39–42,46–51]), 
9 evaluated multisensor-based devices [24–25,28–
29,31,34–37], 1 evaluated a gyroscope-based monitor 
[44], and 5 evaluated combinations of any 2 of the 3 types 
[27,30,43,45]. Among all articles, 19 included only 
MWUs with spinal cord injuries (SCIs) [24,26–29,31,33–
37,40–41,43–44,46,50–52]; 7 included MWUs with a 
mix of diagnoses, including SCI, amputation, congenital 
bone disorder, complex regional pain syndrome, Charcot-
Marie-Tooth disease, demyelinating disease, dystonia, 
fibromyalgia, multiple sclerosis, osteoarthritis, osteogene-
sis imperfecta, poliomyelitis, rheumatoid arthritis, spina 

http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
http://www.rehab.research.va.gov/jour/2016/536/pdf/jrrd-2016-01-0006appn.pdf
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Table 2. 
Findings of fifteen studies that quantified physical activity (PA) in manual wheelchair users with custom models based on commercial monitors.

Study, Year Monitors Criterion Measures Outcome Measures Validation Method

García-Massó et al., 
2015 [40]

ActiGraph GT3X Cosmed K4b2* PA types
Model 1 (nondominant wrist): LDA: 85.9%, QDA: 84.5%, SVM: 83.2%
Model 2 (dominant wrist): LDA: 83.9%, QDA: 86.7%, SVM: 87%
Model 3 (both wrists): LDA: 87.1%, QDA: 90.4%, SVM: 86.8%
Model 4 (all): LDA: 89.4%, QDA: 90.7%, SVM: 93.6%

80% data was used to 
train and cross-
validate classifiers; 
remaining 20% data 
was used to test them

Learmonth et al., 
2016 [39]

ActiGraph GT3X Cosmed K4b2* Energy cost (VO 2)
Model 1 (LW): R = 0.93 ± 0.44, R2 = 0.87 ± 0.19
Model 2 (RW): R = 0.95 ± 0.37, R2 = 0.90 ± 0.14
Model 3 (both wrists): R = 0.94 ± 0.38, R2 = 0.88 ± 0.15

No

Nightingale et al., 
2015 [42]

Device 1: Acti-
Graph GT3X+
Device 2: GENE-
Activ

TrueOne 2400 com-
puterized metabolic 
system†

Energy cost (PAEE)
Model 1 (GT3X at upper arm): MAE: 35.3% ± 30.8%, R2 = 0.46, SEE = 
1.16 kcal/min
Model 2 (GT3X at wrist): MAE: 33.0% ± 39.5%, R2 = 0.67, SEE = 0.91 
kcal/min
Model 3 (GENEActiv at upper arm): MAE: 20.4% ± 14.3%, R2 = 0.76, 
SEE = 0.77 kcal/min
Model 4 (GENEActiv at wrist): MAE: 21.0% ± 15.1%, R2 = 0.77, SEE = 
0.75 kcal/min

Leave-1-subject-out 
cross-validation

Kooijmans et al., 
2014 [41]

ActiGraph GT3X+ Video analysis PA types
Agreement: 85.2%, range: 76.7% to 92.3%
Sensitivity: 88.3%, range: 83.1% to 93.0%
Specificity: 83.3%, range: 72.6% to 91.2%

No

Conger et al., 2014 
[30]

PowerTap SL + 
Track hub, HR 
strap

Oxycon Mobile‡ Energy cost (EE)
Model 1 (using power as a predictor):
R2 = 0.48, SEE: 0.97 kcal/kg/h, RMSE: 0.97 kcal/kg/h
Model 2 (using power and speed as predictors): R2 = 0.70, SEE: 
0.74 kcal/kg/h, RMSE: 0.82 kcal/kg/h
Model 3 (using power, speed, and HR as predictors): R2 = 0.8, SEE: 
0.48 kcal/kg/h, RMSE: 0.74 kcal/kg/h

Leave-1-subject-out 
cross-validation

Coutinho et al., 2014 
[31]

Polar HR monitor Cosmed K4b2* Energy cost (EE)
THBI (Using total HR and [measured] distance traveled as predictors): 
R2 = 0.5437 (p < 0.001), r = 0.58 (95% CI: 0.36 to 0.74)
PCCI (using exercise HR and [measured] propulsion speed as predic-
tors): R2 = 0.5295 (p < 0.001), r = 0.59 (95% CI: 0.34 to 0.73)
PCI (using exercise and basal HR and [measured] propulsion speed as 
predictors): R2 = 0.423 (p < 0.001), r = 0.38 (95% CI: 0.11 to 0.60)

No

Nightingale et al., 
2014 [32]

ActiGraph GT3X+ Cosmed K4b2* Energy cost (PAEE)
Model 1 (waist): r = 0.73, R2 = 0.53 (p < 0.01), SEE = 6.07 kJ/min
Model 2 (upper arm): r = 0.87, R2 = 0.75 (p < 0.01), SEE = 4.38 kJ/min
Model 3 (wrist): r = 0.93, R2 = 0.86 (p < 0.01), SEE = 3.34 kJ/min

No

García-Massó et al., 
2013 [33]

ActiGraph GT3X Cosmed K4b2* Energy cost (VO2)
Model 1 (dominant wrist): r = 0.86, MSE: 5.16%, MAE: 1.67%, 
RMSE: 2.27%
Model 2 (nondominant wrist): r = 0.86, MSE: 4.98%, MAE: 1.65%, 
RMSE: 2.23%
Model 3 (nondominant waist): r = 0.67, MSE: 10.65%, MAE: 2.39%, 
RMSE: 3.26%
Model 4 (nondominant side of chest): r = 0.68, MSE: 10.43%, MAE: 
2.41%, RMSE: 3.23%

20-fold by subject 
cross-validation

Hiremath et al., 
2013 [34]

SW Cosmed K4b2;* 
observation (annota-
tion)

Energy cost (EE)
QDA: MAE: 17.4%, MSE: 5.3% ± 21.5%
NB: MAE: 18.2%, MSE: 4.6% ± 22.8%
User movements
Overall classification accuracy for 4 activities (resting, propulsion, 
arm ergometry, and deskwork): QDA: 96.3%, NB: 94.8%

Leave-1-subject-out
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Study, Year Monitors Criterion Measures Outcome Measures Validation Method

Hiremath et al., 
2012 [29]

SW Cosmed K4b2* Energy cost (EE)
Model 1 (general): MSE: 2.3% (95% CI: 1.7% to 6.3%); MAE: 24.7% 
(95% CI: 22.1% to 27.2%); BA: –1.86, 2.60 kcal/min
Model 2 (activity-specific overall): MSE: 4.9% (95% CI: 2.2% to 7.5%; 
MAE: 16.8% (95% CI: 15.2% to 18.5%); BA: –1.26, 1.96 kcal/min
General model was developed using all activity data while each of the 
4 activity-specific models were developed using resting, deskwork, 
wheelchair propulsion, and arm ergometry data

Separate group of 
subjects (n = 9)

Tanhoffer et al., 
2012 [35]

Polar HR monitor, 
SW

DLW Energy cost (EE)
Model 1 (SW): TDEE: R2 = 0.65, p < 0.001; BA: –2,156, 5,350 kJ/day 
or –0.356, 0.888 kcal/min
PAEE: R2 = 0.16, p = 0.001; BA: –5,427, 5,338 kJ/day or –0.901, 
0.886 kcal/min
Model 2 (HR monitoring): TDEE: R2 = 0.68, p = 0.16; BA: –3,598, 
1,878 kJ/day or –0.597, 0.312 kcal/min
PAEE: R2 = 0.30, p = 0.07; BA: –2,531, 3,453 kJ/day or –0.420, 0.573 
kcal/min

No

Coulter et al., 2011 
[36]

activPAL trio PA 
monitor

No. wheel rev: 
recorded manually 
by observation.
Absolute angle: 
recorded by hand-
held digital video 
recorder and ana-
lyzed by Silicon-
coach Pro 7§

Duration of move-
ment: recorded 
using timer on video 
by two independent 
raters.

Wheelchair movements
Wheel rev: Mean difference: 0.002 ± 0.016 rev, Maximum difference: 
0.038 rev; MAE: 0.59%; ICC(2,1) = 1.00 (95% CI: 1.00 to 1.00); BA: 
–0.029, 0.032 rev
Absolute angle of rotation: Mean difference: 0.006 ± 3.853°, Maxi-
mum difference: 8.789°; ICC(2,1) = 0.999 (95% CI: 0.999 to 0.999); 
BA: –7.56, 7.55o

User movements
Duration of movement: Mean difference: –1.868 ± 1.392 s, Maximum 
difference: 7.15 s; ICC(2,1) = 0.981 (95% CI: 0.669 to 0.994);
BA: –4.597, 0.861 s

NA

Hiremath et al., 
2011 [28]

RT3 Cosmed K4b2* Energy cost (EE)
Model 1 (RT3 arm): MAE: 12.2% to 38.1%, R2: 0.405 to 0.830, SEE: 
0.18 to 0.87 kcal/min
Model 2 (RT3 waist): MAE:16.1% to 41.6%, R2: 0.247 to 0.687, SEE: 
0.18 to 1.04 kcal/min
Model 3 (RT3 arm and waist combined): MAE:12.2% to 38.1%, R2: 
0.405 to 0.864, SEE: 0.18 to 0.87 kcal/min
Range was among activity trials

Separate group of 
subjects (n = 4)

Lee et al., 2010 
[37]

Polar HR monitor VO2 during resting: 
Quark b2*

VO2 during PA: 
Cosmed K4b2*

Energy cost
Individual calibration: MAE: 8.38% ± 6.11%, HR ratio and observed 
MET: R2 = 0.90, observed and predicted MET: r = 0.93
Group calibration: MAE: 25.79% ± 27.90%, HR ratio and observed 
MET: R2 = 0.59, observed and predicted MET: r = 0.78

Separate set of PA 
(different than PA 
performed when 
developing models) 
performed by same 
group of subjects

Washburn and 
Copay, 1999 [38]

CSA uniaxial accel-
erometer

VO2: Aerosport 
TEEM 100 Total 
MAS¶

Polar telemetry
transceiver**

Propulsion fre-
quency: counted by 
investigators

Energy cost
Uniaxial CSA count vs EE measured by MAS:
RW: r = 0.52, p < 0.01, SEE: 5.71 mL/kg/min;
LW: r = 0.67, p < 0.01, SEE: 4.99 mL/kg/min
Uniaxial CSA count vs HR:
RW: r = 0.40, p < 0.01;
LW: r = 0.29, p < 0.01
User movements
Propulsion frequency: RW: r = 0.35, p < 0.01; LW: r = 0.26, p < 0.01

No

Table 2. (cont)
Findings of fifteen studies that quantified physical activity (PA) in manual wheelchair users with custom models based on commercial monitors.
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bifida, scoliosis, and traumatic brain injury [25,30,32,38–
39,42,47]; and 3 did not report the diagnoses of their par-
ticipants [45,48–49]. The majority of the studies were con-
ducted in a structured laboratory environment. Six studies 
were conducted in semistructured settings (i.e., the
National Veterans Wheelchair Games [47,52]), outpatient 
care facilities [24], and unstructured environments (i.e., 
home and a tennis or basketball court [24–26,45,52]).

Outcome Measures, Gold Standards, and Reference 
Comparisons

The outcome measures could be categorized into 
three types: energy cost, wheelchair movements, and user 
movements. The energy expenditure (EE), oxygen con-
sumption, metabolic equivalent, and HR indexes were 
frequently reported outcome measures for quantifying 
the energy cost of PA. Of the 29 selected studies, 14 
quantified PA in terms of energy cost [24–25,27–35,37–
38,50]. Six of the studies reported distance traveled, 
speed (linear and/or angular), absolute angle of rotation, 
and number of wheel revolutions as measures of wheel-
chair movements [36,44–46,48–49]. Eleven of the stud-
ies reported propulsion frequency, propulsion force, 
upper-limb activity counts, duration of user movement, 
and types of activities as the measures of user movements 
[24–26,34,36,38,43,46–48,51]. These outcome measures 
were compared with either gold standards or validated 
reference measurements.

Indirect calorimetry was the most commonly used gold 
standard for validating the energy cost from PA monitors. 
Two studies used doubly labeled water [24,35], and 14 
studies used metabolic analysis systems such as Cosmed 
K4b2 or Quark b2 (COSMED; Rome, Italy), TrueOne 2400 
computerized metabolic system (TrueOne; Salt Lake City, 
Utah), Oxycon mobile (Viasys Healthcare; Hochberg, Ger-

many), gas analyzer (AR-1 type-4, Arco System; Chiba, 
Japan), and Metabolic Analysis System (Aerosport Inc; 
Ann Arbor, Michigan) as the criterion for measuring energy 
cost [27–34,37–40,42,50]. Other methods, including video 
analysis, observation, direct measurements, and motion 
capture systems, were used as reference comparisons for 
validating wheelchair and user movements [34,36,41, 
43–46,49,51–52]. Six studies used video recording as a ref-
erence for distances traveled, propulsion frequency, and 
duration of movement [36,43,45–46,49,51]. Three studies 
used direct measurement and observation to record dis-
tances traveled, propulsion frequency, and PA types as ref-
erence comparisons [34,36,45]. Two studies used 
SMARTWheel (Three Rivers Holdings, Inc; Mesa, Arizona) 
and VICON (Vicon Peak; Lake Forest, California) to mea-
sure/calculate the propulsion force, propulsion frequency, 
and distance traveled [43–44]. In addition, two studies used 
a validated questionnaire and self-reported PA record as 
reference comparisons for EE [25–26].

Statistical Analysis and Key Findings
Among the 18 studies that evaluated the energy cost, 

7 reported the mean signed error (MSE) and/or the mean 
absolute error (MAE). Three of the seven studies used 
commercial monitors with the default algorithms [27–
29], and six used commercial monitors with custom algo-
rithms [28–29,33–34,37,42]. The MSE summarizes the 
accumulated error between the estimation and the crite-
rion over a period of time, where overestimations and 
underestimations at each instance may cancel each other 
out. The MAE represents the average of the absolute 
differences between the estimation and the criterion at 
each instance. Among the 8 studies, the MSE and MAE 
of the commercial monitors with the default algorithms 
ranged from –62.5 to –48.1 percent [29] and from 21.3 

Note: An overview of the commercial and custom monitors can be found in Appendix 2 (available online only).
*COSMED; Rome, Italy.
†TrueOne; Salt Lake City, Utah.
‡Viasys Healthcare; Hochberg, Germany.
§Siliconcoach; Otago, New Zealand.
¶Aerosport, Inc; Ann Arbor, Michigan.
**Polar Electro, Inc; Finland.
BA = Bland-Altman 95% limits of agreement, CI = confidence interval, DLW = doubly labeled water, EE = energy expenditure, HR = heart rate, ICC = intraclass corre-
lation coefficient, LDA = linear discriminant analysis, LW = left wrist, MAE = mean absolute error, MAS = metabolic analysis system, MET = metabolic equivalent, 
MSE = mean signed error, NA = not applicable, NB = Naive Bayes, No. = number, PAEE = Physical Activity Energy Expenditure, PCCI = Propulsion Cardiac Cost 
Index, PCI = Physiological Cost Index, QDA = quadratic discriminant analysis, rev = revolution, RMSE = root mean square error, RW = right wrist, SEE = standard error 
of estimate, SVM = support vector machine, SW = SenseWear, TDEE = Total Daily Energy Expenditure, THBI = Total Heart Beat Index, VO2 = oxygen consumption.

Table 2. (cont)
Findings of fifteen studies that quantified physical activity (PA) in manual wheelchair users with custom models based on commercial monitors.
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Table 3. 
Findings of ten studies that quantified physical activity (PA) in manual wheelchair users with custom devices and algorithms.

Study, Year Monitor
Criterion 
Measures

Outcome Measures
Validation 

Method
Hiremath et 
al., 2015 [52]

PAMS Video record-
ing

PA types
Overall accuracy: Model 1 (PAMS with accelerometer on arm): 89.3%
Model 2 (PAMS with accelerometer on wrist): 88.5%
Model 3 (wheel rotation monitor): 65.4%
Model 4 (accelerometer on arm): 70.4%
Model 5 (accelerometer on wrist): 74.6%

Separate set of 
data (137
10 min trials)

Kiuchi et al., 
2014 [50]

Motion sensor 
(triaxial accel-
erometer and 
gyroscope
sensor)

Gas analyzer 
(AR-1 type-
4*)

Energy cost
Model 1 (triaxial acceleration only):
LW: R2 = 0.64 (p < 0.001), SEE: 0.005 kcal/min/kg;
RW: R2 = 0.68 (p < 0.001), SEE: 0.004 kcal/min/kg;
LA: R2 = 0.66 (p < 0.001), SEE: 0.004 kcal/min/kg;
RA: R2 = 0.82 (p < 0.001), SEE: 0.003 kcal/min/kg
Model 2 (angular velocity only):
LW: R2 = 0.60 (p < 0.001), SEE: 0.005 kcal/min/kg;
RW: R2 = 0.50 (p = 0.001), SEE: 0.005 kcal/min/kg;
LA: R2 = 0.64 (p < 0.001), SEE: 0.005l kcal/min/kg;
RA: R2 = 0.83 (p < 0.001), SEE: 0.003 kcal/min/kg
Model 3 (triaxial acceleration and angular velocity):
LW: R2 = 0.86 (p < 0.001), SEE: 0.003 kcal/min/kg; BA: –0.0083, 0.0031 
kcal/min/kg;
RW: R2 = 0.68 (p < 0.001), SEE: 0.004 kcal/min/kg; BA: –0.0118, 0.0046 
kcal/min/kg;
LA: R2 = 0.75 (p < 0.001), SEE: 0.004 kcal/min/kg; BA: –0.0063, 0.0085 
kcal/min/kg
RA: R2 = 0.87 (p < 0.001), SEE: 0.003 kcal/min/kg; BA: –0.0025, 0.0081 
kcal/min/kg

No

Ojeda and 
Ding, 2014 
[43]

Triaxial accel-
erometer, 
wheel rotation 
monitor

No. propul-
sion: video 
recording; pro-
pulsion fre-
quency: 
SMARTWheel†

User movements
No. propulsion: (Arm) MAE: 8.0% ± 7.1%; ICC(3,1): 0.994 (95% CI: 0.988 to 
0.997)
(Wrist) MAE: 10.8% ± 9.8%, ICC(3,1): 0.990 (95% CI: 0.980 to 0.995);
(Seat) MAE: 13.4% ± 15.6%, ICC(3,1): 0.984 (95% CI: 0.972 to 0.991)
Propulsion frequency: (Arm) MAE: 12.9% ± 15.1%, ICC(3,1): 0.916 (95% CI: 
0.843 to 0.953);
(Wrist) MAE: 17.2% ± 19.3%, ICC(3,1): 0.889 (95% CI: 0.802 to 0.936); 
(Seat) MAE: 24.2% ± 16.6%, ICC(3,1): 0.690 (95% CI: 0.071 to 0.868)

NA

Hiremath et 
al., 2013 [44]

Gyroscope-
based wheel 
rotation
monitor

Distance trav-
eled: VICON 
(vision based 
system), 
SMARTWheel, 
measured total 
hand-cycling 
track length

Wheelchair movements
Distance traveled (range): MAE: 0.17% to 1.38%, MSE: 0.94% to 1.38%, 
SEM: 0.05 to 0.38 m, ICC(3,1): 0.999 to 1.000
Angular velocity: MAE: 0.03% to 0.64%, MSE: 0.00% to 0.06%, SEM: 0.02 
to 0.29 rpm
Linear speed (range): MAE: 0.66% to 2.19%, MSE: 2.19% to 0.27%, SEM: 
0.19 to 0.52 m/s

NA

Sindall et al., 
2013 [45]

GPS tracking 
device with 
integrated 
accelerome-
ter, DL

Time spent: 
video record-
ing; Distance: 
tape measure

Wheelchair movements
Distance traveled: (GPS) MSE: 5.84% ± 5.53%
(DL-right) MSE: 3.04% ± 7.58%
(DL-left) MSE: 4.15% ± 7.77%

NA

Sonenblum et 
al., 2012 [46]

Triaxial 
MEMS accel-
erometer

Time spent 
moving: video 
recording; 
Distance: tape 
measure (pre-
determined 
path)

Wheelchair movements
Distance measured accuracy: 96% ± 2%
User movements
Accuracy of identifying moving or being stationary: Accuracy (each time 
point): moving: 90% ± 6%; stationary: 95% ± 3%
Accuracy (total time): moving: 94% ± 5%; stationary: 93% ± 3%

No
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[28] to 125.8 percent [27], respectively. On the other 
hand, the MSE and MAE of the commercial monitors 
with the custom algorithms ranged from –41.0 to
50.2 percent [34] and from 1.65 [33] to 81.6 percent [37], 
respectively (Tables 1 and 2). For MSE, the negative 
number indicates overestimation while the positive num-
ber indicates underestimation. In addition, 13 out of 18 
studies reported the correlation coefficient (Pearson or 
Spearman) between the estimation and the criterion [24–
25,27–28,30–33,35,37–39,42]. The correlation coeffi-
cient between the estimated energy cost by the commer-
cial monitors with the default algorithms and the criterion 
ranged from 0.35 [25] to 0.84 [27] (Table 1), while the 
correlation coefficient between the estimated energy cost 
by the commercial monitors with the custom algorithms 

and the criterion ranged from 0.40 [35] to 0.95 [39] 
(Table 2).

The Bland-Altman plot and the intraclass correlation 
coefficient (ICC) were also often reported for evaluating 
the energy cost. The Bland-Altman plot assesses the 
agreement between the estimated values and the criterion 
measures [53]. It illustrates the systematic difference
between the estimated values and criterion measures as 
well as outliers [53]. The mean difference represents the 
estimated bias, while the 95 percent limits of agreement 
provide an idea of how far apart two measures are likely 
to be for most individuals. Three studies constructed the 
Bland-Altman plots and reported the mean difference 
and the 95 percent limits of agreement (Tables 1-3) 
[29,35,50]. The ICC, on the other hand, is a reliability 

Study, Year Monitor
Criterion 
Measures

Outcome Measures
Validation 

Method
Ding et al., 
2011 [47]

Wheelchair 
propulsion 
monitoring 
device: 
eWatch

Investigator 
hand annota-
tion with stop 
watch

User movements
Accuracy of 3 classification categories:
Self-propulsion: 84.1% to 88.1%
External pushing: 64.2% to 74.6%
Sedentary activity: 93.9% to 96%

Leave-1-
subject-out 
cross-
validation

Turner, 2011 
[48]

PushTracker OptiPush Bio-
feedback Sys-
tem‡

Wheelchair movements
Distance traveled: MSE: 0.1% ± 1%, p = 0.73
User movements
No. propulsion: MSE: –1% ± 3%, p = 0.32
Propulsion frequency: MSE: –1.7% ± 3.7%, p = 0.19
Speed: MSE: –0.8% ± 2.1%, p = 0.27

NA

Postma et al., 
2005 [51]

ADXL202 
piezo-resistive 
accelerometer

Video record-
ing using 
handheld 
camera

User movements
Classification of wheelchair propulsion and nonwheelchair
propulsion activities.
Agreement: 92% (range: 87% to 96%)
Sensitivity: 87% (range: 76% to 99%)
Specificity: 92% (range: 85% to 98%)
Duration of wheelchair propulsion: Estimation error (range):
2% to 29% (i.e., 22 to 283s)
Range was among subjects

No

Moss et al., 
2003 [49]

Telemetry-
based
velcometer

Video record-
ing, kinematic 
analysis

Wheelchair movements
Average RMS deviation: 0.06 ± 0.01 m/s (propel at 1 m/s), 0.27 ± 0.05 m/s 
(propel at 5 m/s), 0.48 ± 0.16 m/s (propel at 9 m/s), 0.27 ± 0.07 m/s (accelera-
tion), 0.35 ± 0.06 m/s (deceleration)
Speed: Disc wheel: MSE: 0.0% ± 0.17% (95% CI: 0.34% to 0.34%);
Spoke wheel: MSE: 0.0% ± 0.41% (95% CI: 0.82% to 0.82%)

NA

Note: An overview of the commercial and custom monitors can be found in Appendix 2 (available online only).
*Arco System; Chiba, Japan.
†Three Rivers Holdings, LLC; Mesa, Arizona.
‡Sun Components; Milwaukee, Wisconsin.
BA = Bland-Altman 95% limits of agreement, CI = confidence interval, DL = Datalogger, ICC = intraclass correlation coefficient, LA = left arm, LW = left wrist, 
MAE = mean absolute error, MSE = mean signed error, NA = not applicable, No. = number, PAMS = Physical Activity Monitoring System, RA = right arm, RMS = 
root mean square, RW = right wrist, SEE = standard error of estimate, SEM = standard error of the mean. 

Table 3. (cont)
Findings of ten studies that quantified physical activity (PA) in manual wheelchair users with custom devices and algorithms.
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Figure.
Study selection flow diagram.

measure that considers the systematic differences in 
paired observations [54]. In other words, the ICC repre-
sents the extent to which monitors produce the same rank 
orders in the outcomes as the criterion measures. One 
study reported the ICC(3,1) between the energy cost esti-
mated by the commercial monitors, i.e., the SenseWear 
(Jawbone: San Francisco, California) and RT3 (Stay-
healthy Inc; Monrovia, California), with the default algo-
rithms, and the criterion measures were 0.62 and 0.64, 
respectively, showing a medium strength of agreement 
[27] (Table 1).

For quantifying wheelchair movements, various sta-
tistical analyses such as the MSE, the correlation coeffi-

cient, the Bland-Altman plot, and the ICC were used. A 
total of 6 studies measured wheelchair movements in 
MWUs in terms of the distance traveled, linear and/or 
angular speed, absolute angle of rotation, and number of 
wheel revolutions [34,36,45–46,48–49]. Coulter et al. 
reported that the MAE, ICC(2,1) and the Bland-Altman 
95 percent limits of agreement for the number of wheel 
revolutions were 0.59 percent, 1.00, and 0.029 to 0.032 
revolutions, respectively [36]. In addition, Coulter et al. 
found the ICC(2,1) and Bland-Altman 95 percent limits 
of agreement for the absolute angle of rotation were 
0.999 and –7.56° to 7.55°, respectively [36]. Five studies 
[44–46,48–49] evaluated the custom devices/algorithms, 
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and the MSE and MAE for distance traveled ranged from 
–11.4 to 19.7 percent [45] and from 0.17 to 1.38 percent 
[44], respectively (Table 3). Additionally, the MSE and 
MAE for linear and angular speed ranged from –2.19 
[44] to 0.82 percent [49] and from 0.03 to 2.19 percent 
[44], respectively (Table 3).

A total of 14 studies quantified user movements in 
terms of duration, propulsion frequency, number of pro-
pulsions, and PA types performed [24–26,34,36,38,40–
41,43,46–48,51–52]. Two studies evaluated the commer-
cial monitors with default algorithms on the duration of 
user movement using validated questionnaires (Table 1). 
The correlation coefficients between the monitors’ out-
puts and the reference measurements were 0.60 [26] and 
0.53 [25], respectively. Two studies evaluated the com-
mercial monitors with the custom algorithms. One study 
reported that the Bland-Altman 95 percent limits of 
agreement and an ICC(2,1) were –4.597 to 0.861 s and 
0.981, respectively [36], for the duration of user move-
ment. Another study found the correlation coefficient 
between the estimated and the measured propulsion fre-
quency were 0.26 and 0.35 when the device was worn on 
the left and right wrist, respectively [38] (Table 2). The 
MAE and ICC(3,1) for the number of propulsions ranged 
from 8.0 to 13.4 percent and from 0.984 to 0.994, respec-
tively [43], while that for the propulsion frequency 
ranged from 12.9 to 24.2 percent and from 0.690 to 
0.916, respectively [43] (Table 3). Three studies evalu-
ated the commercial monitors with the custom algorithms 
in classifying PA performed by MWUs [40–41,52]. One 
reported that the percent accuracy of classifying four 
types of PA (resting, propulsion, arm ergometry, and 
deskwork) were 94.8 percent and 93.6 percent while 
using naïve Bayes and quadratic discriminant analysis 
algorithms, respectively [34] (Table 2). A different study 
reported a percent accuracy of 89.4 percent, 90.7 percent, 
and 93.6 percent for classifying five types of PA (seden-
tary, transfers, housework, locomotion, and moderate PA) 
using linear discriminant analysis, quadratic discriminant 
analysis, and support vector machine, respectively [40] 
(Table 2). Another study reported a sensitivity of 88.3 per-
cent and a specificity of 83.3 percent for classifying two 
types of PA (self-propelled wheelchair driving and other 
activities) [41] (Table 2). Two studies examined custom 
devices/algorithms and reported an accuracy ranging from 
87 [51] to 94 percent [46] for recognizing moving versus 
being stationary (Table 3). Lastly, two studies examining 
custom devices/algorithms showed an accuracy of 64.2 to 

96.0 percent for detecting three types of PA (self-
propulsion, external pushing, and sedentary activities) 
[47], and an accuracy of 89.3 percent for identifying seven 
types of PA (resting, arm ergometry, household activities, 
wheelchair propulsion, being pushed in chair, wheelchair 
basketball, and activities that may involve wheelchair 
movements) in MWUs [52], respectively (Table 3).

DISCUSSION

Validity of Activity Monitors in Manual Wheelchair 
Users

Overall, the commercial monitors with the default 
algorithms were generally not suitable for tracking PA in 
MWUs, as the default algorithms failed to detect wheel-
chair-based activities that were not usually found in the 
ambulatory population. When examining the performance 
of commercial monitors in the ambulatory population, we 
found that their accuracy (MSE) in estimating energy cost 
was 12.07 percent (95% CI: –18.28% to 5.85%) in uniax-
ial accelerometer-based monitors, 6.85 percent (95% CI: 
4.49% to 18.20%) in triaxial accelerometer-based moni-
tors, and 3.64 percent (95% CI: –1.70% to 8.97%) in mul-
tisensor devices [21]. In general, the estimation errors of 
activity monitors in the ambulatory population fell within 
20 percent when compared with criterion measures, and 
the pooled Pearson correlation was 0.68 (95% CI: 0.56 to 
0.77) [21]. In contrast, when applying the commercial 
monitors with the default algorithms to people who rely on 
wheelchairs for mobility, the MSE was –55.3 percent 
(95% CI: –62.5% to –48.1%) for multisensor devices [29]. 
The MAE was 21.3 to 55.2 percent and 24.4 to 125.8 per-
cent, respectively, for triaxial accelerometer-based and 
multisensor devices [27–29]. Additionally, the Pearson 
correlation ranged from 0.35 [25] to 0.83 [24]. With the 
correction on the default algorithms in commercial moni-
tors for wheelchair users, we have observed a general 
reduction in the estimation errors. The MSE was 4.6 per-
cent (95% CI: –41.0% to 50.2%) for multisensor devices 
with the custom algorithms [34]. The MAE was 1.65 [33] 
to 41.6 percent [28] and 16.8 to 24.7 percent [29] for triax-
ial accelerometer-based and multisensor devices with the 
custom models, respectively, and the Pearson correlation 
ranged from 0.38 [31] to 0.93 [32]. Despite the improved 
accuracy with the correction on the default algorithms and 
custom devices/algorithms, the performance of the activity 
monitors in tracking energy cost of MWUs was not on par 
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with the accuracy for the ambulatory population. A wide 
variability was found in study results because of the lack of 
consistency in experimental protocols and evaluation mea-
sures used in different studies. Therefore, it was difficult to 
compare individual monitors/algorithms across different 
studies and conclude which specific monitor was better in 
quantifying energy cost for MWUs. The accuracy in track-
ing energy cost by the portable monitors is particularly 
important for weight-management interventions, in which 
users can use the estimated energy cost for attaining and 
maintaining body weight, and for better understanding 
dose-response relation between PA and health in this popu-
lation [55–56].

Aside from the energy cost, PA monitors were also 
used to quantify wheelchair and user movements. For the 
wheelchair movements, the commercial monitors with cus-
tom algorithms showed a MAE <1 percent and ICC(2,1) of 
0.999 for measuring wheel revolutions and absolute angle 
of rotation [36]. In addition, the custom devices/algorithms 
showed a MSE <5 percent for measuring speed and dis-
tance traveled [48–49]. For the user movements, the com-
mercial monitors with default algorithms showed a 
moderate strength of correlation with the reference compar-
ison on the duration of movements [25]. The custom 
devices/algorithms, on the other hand, showed an accuracy 
of 87 percent for tracking the duration of movements [51] 
and an accuracy as high as 95 percent for propulsion fre-
quency [48]. Although not all commercial monitors were 
designed to quantify wheelchair and user movements, with 
some adaptations, commercial monitors with custom algo-
rithms and custom monitors were able to track these vari-
ables with fairly good accuracy. These measurements were 
insightful in providing additional information about wheel-
chair usage and frequency of upper-limb movements that 
may help researchers to further investigate the relationship 
and find the balance between PA and injuries resulting from 
upper-limb overuse.

Limitations of Evaluation Studies
Different studies selected different methods and mea-

sures to examine the validity of the activity monitors. 
MSE, MAE, ICC, correlation coefficient, and Bland-
Altman 95 percent limits of agreement were the com-
monly used assessment measures among studies; how-
ever, they were not reported in the same way or not all of 
them were reported. MSE and MAE are measurements of 
prediction errors. Since a small MSE can result from can-
celation of under- and overestimations over a period of 

time, it is necessary to state the length of time in which 
the MSE was calculated and the types of PA involved 
during this period of time. The MAE, which represents 
the absolute difference between two measures, should be 
reported with MSE to give a more complete idea of the 
performance of the monitors. In addition, some studies 
reported the range while the others reported 95 percent 
CIs with the average MSE, MAE, ICC, correlation coef-
ficient, and Bland-Altman limits of agreement. The vari-
ous analytical methods and styles of presenting results 
made it challenging for researchers to compare and con-
trast across different studies, and it also prevented 
researchers from pooling results from all studies to make 
a comprehensive observation. Therefore, a standardized 
way to report findings should be established for validat-
ing monitors. It is recommended that accuracy measures 
such as MSE and MAE along with reliability measures 
such as ICC and Bland-Altman 95 percent limits of 
agreement be included as they provide a comprehensive 
evaluation on the overall performance of the monitors.

In addition to the analytical limitations, the studies 
included in this review were generally limited in terms of 
the generalizability of their results. Most studies tended 
to evaluate the devices/algorithms with a homogeneous 
group of participants. Nineteen out of twenty-nine studies 
included only MWUs with SCI. According to a disability 
statistics report in 2002, cerebrovascular disease, or 
stroke, is the leading condition associated with wheel-
chair use, accounting for 11.1 percent of all wheelchair 
users [10]. Arthritis, multiple sclerosis, and amputation 
accounted for 10.4 percent, 5.0 percent, and 3.7 percent 
respectively [10]. Paraplegia from SCI at or below T1 
accounts for 3.6 percent of all wheelchair users [10]. 
Other diagnoses also resulting in wheelchair use include, 
but are not limited to, orthopedic impairment of the lower 
limb (3.6%), heart disease (3.3%), cerebral palsy (3.1%), 
rheumatoid arthritis (3.0%), and diabetes (2.4%) [10]. So 
far, the validity of the use of monitors in MWUs is limited 
to those with SCI (Appendixes 3–5). Further investiga-
tions on MWUs with other diagnoses will greatly
improve the external validity of the studies. In addition, 
many studies adopted stringent study protocols, which 
also reduced the external validity of the results. The con-
trolled environment and structured activity trials may not 
reflect the everyday life of a MWU. Having less struc-
tured PA protocols that include a larger variety of activi-
ties such as sports/recreational and free-living activities 
could potentially improve the generalizability of the
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results and may benefit the application of PA monitors 
for everyday use.

The quality of the evaluations was also limited by the 
criterion measures and validation methods chosen. Porta-
ble metabolic cart and doubly labeled water were two of 
the most commonly used criterion measures for evaluat-
ing the performance of activity monitors in quantifying 
the energy cost. The portable metabolic cart is a wearable 
device, but a facial mask is needed to collect gas samples, 
which limits the types of activities people can perform 
[57], whereas doubly labeled water requires urine or 
saliva specimens before and after drinking an initial dose 
of 2H2

18O [57]. The portable metabolic cart provides 
breath-by-breath energy cost, while the doubly labeled 
water provides an overall energy cost over the entire 
monitoring period. Depending on the purpose of the 
study, researchers should choose the appropriate criterion 
measures for evaluation. Furthermore, the validation 
method was important when evaluating the predictive 
abilities of the devices and algorithms [58–59]. There are 
three levels of validation. The highest level is achieved 
by using a completely different set of samples for testing 
and evaluation [60]. Then followed by partitioning the 
sample into subsets (also known as cross-validation); one 
subset is used for algorithms, devices training, and devel-
opment while the other is for testing and validation [59]. 
The lowest level of validation uses the same sample for 
both training and testing, which does not indicate the pre-
dictive performance of the new algorithms on unseen 
samples as the other two levels of validation do. Without 
properly conducted validation, it was difficult to con-
clude whether the validity observed was due to overfit-
ting [59–60].

Future Development of Physical Activity Monitors 
and Potential Applications

Almost all of the activity monitors investigated in 
this review focused on the quantity of movement in terms 
of the intensity levels and durations of activities. How-
ever, the quality of the movement is equally important. 
For example, muscular imbalance in the shoulder has 
been identified as a source of pain and injury in MWUs 
[61]. Therefore, activity monitors that measure the qual-
ity of the movements during PA, i.e., the physical forms 
of movements and the frequency of different forms per-
formed, may provide additional clinical insights. Previ-
ous studies found that manual wheelchair usage is highly 
associated with upper-limb repetitive strain injury (RSI) 

[62–64]. When MWUs increase the amount of PA they 
perform every day for the purpose of lowering the risks 
of developing chronic illnesses such as cardiovascular 
diseases, obesity, and diabetes, they may be at risk of 
developing another chronic condition, i.e., RSI. Studies 
have shown improper propulsion patterns and transfer 
techniques and some specific actions that cause impinge-
ment may increase the incidences of RSI at the wrist, 
elbow, and shoulder joints [65–67]. The chronic pain 
from RSIs can prevent MWUs from further participation 
in PA, as well as create a barrier that requires them to 
become more sedentary than before. Characterizing the 
forms of movements and assessing their appropriateness 
during PA can be critical for allowing MWUs to safely 
participate in regular PA and develop a healthier lifestyle 
without risking upper-limb RSIs.

Limitations of Review
This systematic review included only journal and 

conference articles found in three databases: PubMed, 
IEEE, and Scopus. It is possible that some relevant stud-
ies were not included. The commercial activity monitors 
evaluated in the selected articles were only a subset of 
those that are currently available on the market. These 
issues contributed to a mild selection bias. Moreover, due 
to the heterogeneity of the selected studies, including dif-
ferences in study protocols, outcome measures, and ana-
lytical methods, the results could not be pooled to obtain 
a better accuracy estimation of the PA monitors for 
MWUs.

CONCLUSIONS

The commercial monitors with the default algorithms 
were not accurate in estimating energy cost in MWUs and 
thus are not suitable for these individuals to track their 
everyday energy output. While the commercial monitors 
with the custom algorithms or the custom devices did 
better, their performance was not on par with those used in 
the ambulatory population. Nonetheless, the commercial 
monitors with custom algorithms or custom monitors 
showed fair accuracy in measuring wheelchair and user 
movements. Adaptations to the commercial monitors or 
development of monitors specifically for MWUs are 
needed for quantifying PA in this population. The external 
validity of the selected studies is also limited because of the 
homogeneous samples and stringent testing and evaluation 
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protocols. Evaluations of activity monitors used in real-life 
situations are scarce. Further validation studies in MWUs 
with various diagnoses performing free-living activities in 
more realistic scenarios are needed.
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